If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.2x^2+6x+44=0
a = 0.2; b = 6; c = +44;
Δ = b2-4ac
Δ = 62-4·0.2·44
Δ = 0.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-\sqrt{0.8}}{2*0.2}=\frac{-6-\sqrt{0.8}}{0.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+\sqrt{0.8}}{2*0.2}=\frac{-6+\sqrt{0.8}}{0.4} $
| 70+5x=-97 | | x/5+-7=40 | | 15+x=39 | | -520=-26x | | 1/4(4/3k+4)+7=49 | | x*(2x+6)^.5=0 | | 3x-13=12x-184 | | (2/a)-(3/4a)=2 | | 5-3(2x-6)-(2x-4)=27-6x | | x*(2x+6)^(1/2)=0 | | -2(2x+3)=-4(-+1)-2 | | (9c+27)+(10c+18)=180 | | 39+m=6 | | 13+(6-2x)=7+(7x+3) | | (10c+18)+(9c+27)=180 | | 15-2x=15-2x | | 15-2x=-2x-15 | | 3s=s+10 | | S+10=3s | | 2w-62=w | | 3a=6=2a | | (b+51)+(2b-22)=180 | | 3x+8+6x+12=110 | | X+(2x-3)=6 | | Y=1250+15x | | 8c+12=c+19 | | 105=5(4n+5) | | 3x+(2x-3)=6 | | 0=-0.04d^2+0.8d+1.6 | | 14a-10a-2a=4 | | (2w+38)+(3w+57)=180 | | 320=-20b |